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ABSTRACT 
Traditional decision analyses of groundwater remediation scenarios frequently fail 
because the probability of adverse, unanticipated events occurring is often high. 
This is driven by many factors including that (1) the models developed to represent 
the flow and transport in contaminated aquifers are typically simpler than reality 
and do not account for all the important governing processes, (2) probability 
distributions are assigned to critical performance parameters (such as model inputs 
or characteristics of the engineered remediation systems) even though some of 
these parameters might be unknown or not be very well constrained. However, 
there is a novel decision analysis methodology and a computational tool based on 
Bayesian Information-Gap Decision Theory (BIG-DT) that are designed to mitigate 
the shortcomings of the models and probabilistic decision analyses by leveraging a 
non-probabilistic decision theory -- information-gap decision theory. The new 
decision analysis methodology considers possible models that have not been 
explicitly enumerated and does not require us to commit to a particular probability 
distribution for model and remediation-design parameters. Both the set of possible 
models and the set of possible probability distributions grow as the degree of 
uncertainty increases. The fundamental question that BIG-DT asks is “How large 
can these sets be before a particular decision results in an undesirable outcome?”. 
The decision that allows these sets to be the largest is considered to be the best 
option. In this way, BIG-DT enables robust decision-support for groundwater 
remediation problems. Here, we apply BIG-DT to a representative groundwater 
remediation scenario where different options for hydraulic containment and pump & 
treat are being considered. BIG-DT requires many model runs and high-
performance computing resources are needed when complex models are used. We 
demonstrate the BIG-DT analyses on a series of synthetic problems that are 
designed to be consistent with real-world problems such as Los Alamos National 
Laboratory (LANL) contamination sites. We also discuss a general framework for 
how the BIG-DT analyses will be carried out at the chromium groundwater 
contamination site at LANL. BIG-DT is implemented in Julia (a high-level, high-
performance dynamic programming language for technical computing) and is part 
of the MADS framework (http://mads.lanl.gov and 
http://madsjulia.github.io/Mads.jl). 

INTRODUCTION 
Recently, O'Malley and Vesselinov [1] presented a Bayesian-Information-Gap 
Decision Theory (BIG-DT) framework for making decisions under various types and 
severities of uncertainty. O'Malley and Vesselinov [2] applied BIG-DT to site 
selection for CO2 sequestration. In the current work, we demonstrate the 
application of BIG DT for groundwater remediation. BIG-DT analysis is performed 
using the open-source code MADS (Model-Analyses & Decision Support) [3,4]. The 
analyses are based on synthetic example problems. However, they are designed to 
be consistent and representative of the conditions at the Los Alamos National 

http://mads.lanl.gov/
http://madsjulia.github.io/Mads.jl
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Laboratory (LANL) Chromium site [3]. 
 

LANL CHROMIUM SITE 
The chromium plume at LANL is a complex contaminant-remediation site with 
spatial extent of several square kilometers. It is located in a regional aquifer near 
water-supply wells and other points of compliance. The plume originated on the 
ground surface and the contaminant migrated along complex pathways through a 
thick vadose zone (~300m) that incudes intermediate lateral zones of saturation 
and vertical preferential flowpaths. The remedial options at the site include natural 
attenuation (NA), enhanced attenuation (EA), contaminant source removal (in the 
vadose zone), contaminant extraction (in the regional aquifer at the plume centroid 
and peripheries), biogeochemical remediation (injection of fluids stimulating growth 
of organisms in the aquifer impacting chromium concentrations), as wells as 
hydraulic controls on the groundwater flow and transport in the vadose zone and 
the regional aquifer. For the last 7-10 years, a substantial amount of research and 
model-analysis work have been actively applied at the site [5–7]. A site map is 
presented in Fig.1. The figure shows the locations of the site monitoring wells and 
observed chromium concentrations. 
 

 
Fig. 1: Map of the LANL chromium site representing site conditions circa 2016. Green and blue dots 

show the locations of aquifer and vadose zone monitoring wells, respectively. Red stars are municipal 
water supply wells. Recently observed chromium (Cr6+) concentrations at each regional well are shown 
in purple [μg/ℓ]; the concentrations at two-screen wells (e.g. R-61) are shown as upper / lower screen 
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values. The chromium plume (red) represents an area with concentrations higher than 50 μg/ℓ (ppb). 

BIG-DT METHDOLOGY 
BIG-DT is a novel approach that uses a combination of site observations, modeling, 
Information Gap Decision Theory (IGDT), and Bayesian statistics to perform model-
based decision analyses. The framework allows decision makers and stakeholders 
to make a decision under various types and severities of uncertainty in a rigorous 
and mathematically justifiable manner. 
 
Bayes' rule is a commonly used tool for inverting probabilities. In the case of non-
deterministic (probabilistic) models, there are uncertain model-input parameters 
that produce uncertain model-predicted outcomes. The uncertain inputs and 
outputs are often defined by a probability distribution function (pdf). Bayes' rule 
allows us to estimate probability of input parameters given probability of the 
outcomes. In other words, Bayes' rule allows us to use measured uncertain site 
observations related to the corresponding model outputs (predictions), to make an 
inference about the input model parameters. Bayes' rule can be defined 
mathematically as, 

 𝑓𝑓(𝐪𝐪|𝐨𝐨) = 𝑓𝑓�𝐪𝐪�𝐨𝐨� 𝑓𝑓(𝐪𝐪)

∫ 𝑓𝑓�𝐪𝐪�𝐨𝐨� 𝑓𝑓(𝐪𝐪) 𝑑𝑑(𝐪𝐪)Ω

  (1) 

where 𝐪𝐪 are the model-input parameters, Ω is the model-input parameter space, 𝐨𝐨 
are observations, 𝑓𝑓(𝐪𝐪) is the prior distribution, and 𝑓𝑓(𝐪𝐪|𝐨𝐨) is the likelihood function. 
The prior distribution represents our belief about how the parameters of the system 
are distributed a priori (based on literature data or expert knowledge). The 
conditional likelihood function is a function that describes how the observations are 
distributed given model-input parameters 𝐪𝐪. The conditional likelihood function is 
generally related to the discrepancies (residuals) between observed data and model 
predictions (model output for given 𝐪𝐪) [8]. 
 
In practice, the integral in the Bayes' rule equation is difficult to compute 
analytically because the exact form of the model function is typically complex and 
unknown; the model function is frequently high dimensional over the entire model-
input parameter space. Monte Carlo methods are frequently used instead to 
approximate a solution to the Bayes' rule equation. In the BIG-DT approach, Bayes' 
rule is used to address parameter uncertainty. 
 
Information-Gap Decision Theory (IGDT) (also referred as Info-gap Decision 
Theory) is a non-probabilistic method for quantifying uncertainty. IGDT answers the 
following question: “How wrong can our best guess be before the possibility for 
failure exists?” IGDT does not consider the probability of events to occur, but 
instead it focuses only on exploring sets of events that are important for the 
decision analysis [9]. IGDT application is motivated because the classical 
(Bayesian) probabilistic methods fail to adequately characterize uncertainties in the 
following cases: 
• Uncertainty cannot be characterized by assigning a probability to all possible 

events. For example in many real-world remediation problems, there are 
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multiple different conceptual models that can be applied to represent physical 
processes at a site. As a result, frequently, it is impossible to define all possible 
conceptual models, and it is impossible to the define the probability for each 
conceptual model to occur. 

• The actual probability distribution function (pdf) that characterizes the 
uncertainty is unknown. In many real-world problems, we know there are 
uncertainties, but we do not know what is the type (shape) of the pdf describing 
each uncertainty. We do not know if they are uniform, normal, log-normal, Levy 
type, or something else; typically we do not even know basic properties of the 
pdf (mean, variance, etc.). In this case, guessing the pdf type/ properties, even 
if it is approximately correct causes a bias. The guessed pdf model is imposing 
information into the decision process that is quite possibly untrue. For example, 
major consequences can occur from performing decision analyses at the tails of 
the guessed pdf that may differ substantially from that of the actual unknown 
pdf [10]. Frequently events in the tails of the distribution are exactly what 
decision makers are interested in, because these events typically represent 
extreme events, and therefore may be a disaster that a decision maker is trying 
to avoid. 

 
Mathematically, the info-gap model can be expressed as, 

 𝑀𝑀(𝜀𝜀,𝐪𝐪) = �𝐹𝐹: �𝐹𝐹𝑖𝑖−𝐹𝐹𝑖𝑖(𝐪𝐪)
𝐹𝐹𝑖𝑖(𝐪𝐪) � ≤ 𝜀𝜀, 𝑖𝑖 = 1, 2, … ,𝑁𝑁 � (2) 

where 𝑀𝑀(𝜀𝜀,𝐪𝐪) represents a set of possible outcomes from given set of parameters 
𝐪𝐪, within a horizon of information-gap uncertainty 𝜀𝜀. We note that we have 
represented the model uncertainty here non-parametrically. This is important, 
because studies have shown that non-parametric model uncertainty can be 
significantly larger than parametric uncertainty [11]. The outcomes 𝑀𝑀(𝜀𝜀,𝐪𝐪) are all 
possible model outputs (predictions) that lie within a relative error of the nominal 
model 𝐹𝐹𝑖𝑖(𝐪𝐪), or expressed differently, all possible model outputs for which the 
relative maximum difference (infinity norm) between the possible model output and 
nominal model output, is less than or equal to a chosen horizon of uncertainty. The 
nominal model (𝐹𝐹𝑖𝑖(𝐪𝐪)) is the term used to identify the best guess for a particular 
phenomenon. 
 
Note that, at a horizon of uncertainty of zero, BIG-DT analysis will be equivalent to 
a purely Bayesian analysis. Since the aim of IGDT is to answer the question: “How 
wrong can our best guess be before the possibility for failure exists?”, in terms of 
the info-gap model defined in Equation 2, this question can be answered 
mathematically as the largest set of possible outcomes for which none of the 
outcomes within the set causes failure as defined by the performance goals in the 
BIG-DT analysis. The largest horizon of uncertainty for which failure is not in the 
set of possibilities will be defined as the robustness of the decision [10]. IGDT 
allows one to quantify how robust a decision is against failure. 
 
In order to calculate robustness in the BIG-DT analysis, one must first define what 
constitutes a failure. The criteria that define whether or not a failure has occurred 
will be referred to as performance goals. These are criteria that a decision maker 
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would attempt to meet when choosing remedial options: 
• Choose a remediation scenario that successfully remediates the groundwater. 
• Choose a remediation scenario that avoids adverse affects to the aquifer. 

With these criteria in mind, two performance goals that have been used in the 
current work to define failure, and are expressed mathematically as: 

• The maximum concentration at a point of compliance does not exceed the 
MCL. 

• The drawdown at water supply wells that is induced by the pump and treat 
system does not exceed a prescribed threshold. 

 
BIG-DT is the confluence of two methods -- Bayesian and IGDT -- for addressing 
uncertainty with the aim of combining the strengths of each. Bayesian statistics are 
used to address the parametric uncertainty of the physical system. If the 
probability distribution of the observation errors was known and the physical model 
was perfectly accurate, the Bayesian approach would suffice at addressing all 
potential uncertainties. However, this is not the case. IGDT is used to address 
uncertainty that the Bayesian approach is not always well suited to address, 
namely: uncertainty in the physical model and uncertainty in the conditional 
likelihood function for the Bayesian approach (which describes the inaccuracy of the 
model and the observations). Uncertainty in the conditional likelihood is expressed 
as 

 𝑈𝑈(𝜀𝜀) = �𝑓𝑓𝐻𝐻(𝐎𝐎|𝐪𝐪): �𝐻𝐻−𝐻𝐻0
𝐻𝐻0

� ≤ 𝜀𝜀,𝐻𝐻 ∈ [0.2,0.8] � (3) 

where 𝐻𝐻0 = 1
2
 and 𝑓𝑓𝐻𝐻(𝐎𝐎|𝐪𝐪) is a multivariate Gaussian likelihood with covariance 

given in Equation 1 and zero mean. Note that in another study, a different info-gap 
model of the conditional likelihood could be used capture uncertainty in this 
function. Here, we have used the parameter 𝐻𝐻 to describe uncertainty in 
conditional likelihood. In the info-gap uncertainty models (Equations 2 and 3), the 
index 𝜀𝜀 is used to describe a set of events that are possible within that horizon of 
uncertainty. 

RESULTS 
BIG-DT provides a unique capability for groundwater remediation, a ~$20 billion 
problem within the DOE complex [1]. We demonstrate this method by applying it to 
a problem that is representative of LANL’s chromium plume. Fig.2 shows a 
schematic description of the representative site that we consider here. The 
commonalities with LANL’s chromium site include: a network of ~30 monitoring 
wells surrounding the contaminant plume, a compliance boundary where 
concentrations must be kept below a regulator-specified threshold, supply wells in 
the vicinity of the contaminant plume, one or more wells that can be used for pump 
& treat near the boundary, and uncertain model parameters that govern the flow of 
water and transport of the contaminant. In this problem, three potential remedial 
options are considered. The first is the most expensive and involves using all three 
extraction wells. The second is the least expensive and involves only using the 
central extraction well. The third comes with an expense somewhere between the 
first two options and involves using the two outer extraction wells, but not the 
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central extraction well. 
 
Fig. 3 shows the results of applying BIG-DT to this decision scenario. As expected, 
the first remedial option provides the most robustness against uncertainty. Initially, 
it may be somewhat surprising that the second option (where only the central 
extraction well is used) provides more robustness against uncertainty than the third 
option (where the two outer extraction wells are used). However, this can be 
understood to arise from the fact that the central well is the crucial well for 
successful pump & treat here. When only the two outer wells are used, the 
contaminant can split the two wells make it across the compliance boundary. 

CONCLUSIONS 
Based on the presented BIG-DT analysis, we draw the following conclusions: 
1. The least expensive remedy (use only the central extraction well) provides 

almost as much robustness against uncertainty as the best remedy (use all the 
extraction wells), making it a good option. The decision to use all the extraction 
wells could be justified if additional robustness is desired, and could be seen as 
a conservative decision. 

2. Using the two outer extraction wells without using the central extraction well is 
not a good remedy, and employing this remedy would be a bad decision. It is 
expected to fail, and provides no robustness against uncertainty. If a two-well 
remedy is desired an alternative design should be considered such as employing 
the central well and one of the outer wells. 

Currently, we are working on BIG-DT analyses related to actual real-world 
problems. More examples of synthetic application related to IGDT and BIG-DT can 
be found at http://madsjulia.github.io/Mads.jl/Examples/. For more information 
about MADS, please visit http://mads.lanl.gov/. 

  

http://madsjulia.github.io/Mads.jl/Examples/
http://mads.lanl.gov/
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Fig. 2: Map of the representative site. The green dots denote the locations of wells 
that are used for monitoring the plume evolution, the red stars denote the locations 

of water supply wells, the cyan dots denote the locations of potential extraction 
wells, and the black line denotes the compliance boundary. Along the compliance 

boundary and further to the south, concentrations of the contaminant cannot 
exceed a specified threshold. The blue ellipse denotes the location where the 

contaminant enters the aquifer from the vadose zone. 
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Fig. 3. For a given probability of failure, the robustness against uncertainty is 

shown for each of the three remedies considered. The robustness against 
uncertainty quantifies how wrong the modeler can be in the construction of the 
physical and probabilistic models while still ensuring that the probability of an 

undesirable outcome remains below the value on the x-axis. 
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